Add like
Add dislike
Add to saved papers

Effect of amino acids on transcription and translation of key genes in E. coli K and B grown at a steady state in minimal medium.

New Biotechnology 2018 October 30
Growing E. coli to high densities is a common strategy for biologicals production. The process is implemented by using complex or minimal media with different feeding strategies. To understand the effect of amino acids, E. coli B and K were grown at a steady state of 0.35 h-1 in glucose minimal medium with and without amino acids, while their metabolism, protein abundance and gene expression were compared. The results showed that amino acids promoted higher acetate excretion, higher fatty acid biosynthesis (K strain), repressed glucose uptake rate, and decreased expression of proteins associated with the TCA cycle, glyoxylate shunt and amino acid biosynthesis. In presence of amino acids, E. coli K upregulated fatty acid biosynthesis and repressed more genes and proteins involved in amino acid biosynthesis than E. coli B. These findings are correlated with higher yield on glucose (Yx/s ) and high specific biomass production rate (qx ) in K strain in the presence of amino acids. In contrast, pre-formed precursor molecules such as amino acids did not affect fatty acid biosynthesis in E. coli B or Yx/s and qx , which were higher than those of E. coli K, suggesting that constitutive synthesis of energetically demanding precursors and higher fatty acid β-oxidation activity is key for high biomass-performer E. coli B. Both strains turned off unnecessary pathways and directed their metabolism to proteome efficient overflow metabolism likely to generate energy and provide protein to functions supporting higher growth rate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app