Add like
Add dislike
Add to saved papers

MicroRNA-22 Suppresses Breast Cancer Cell Growth and Increases Paclitaxel Sensitivity by Targeting NRAS.

In recent study, microRNAs have various important functions in diverse biological processes and progression of cancer. In human breast cancer, microRNA-22 has been reported to be downregulated. However, molecular mechanism of microRNA-22 in breast cancer progression and chemosensitivity has not been well studied. In our study, these results demonstrated that microRNA-22 expression levels were significantly reduced in 40 pairs of human breast cancer tissues when compared to normal tissues. Enforced expression of microRNA-22 inhibited activity of cell proliferation and cell migration in breast cancer cells. Furthermore, microRNA-22 targeted NRAS proto-oncogene, GTPase (NRAS) in breast cancer cells. The expression levels of NRAS in human clinical specimens were higher in breast cancer tissues when compared to normal tissues. Moreover, microRNA-22 sensitized breast cancer cells to paclitaxel by regulation of NRAS. Our results then demonstrated that microRNA-22 functioned as a tumor suppressor microRNA and indicated potential application for the diagnosis and treatment of cancer in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app