Add like
Add dislike
Add to saved papers

Aryl hydrocarbon receptor mediates the cardiac developmental toxicity of EOM from PM 2.5 in P19 embryonic carcinoma cells.

Chemosphere 2019 Februrary
Ambient fine particulate matter (PM2.5 ) has been found to be associated with congenital heart defects, but the molecular mechanisms remain to be elucidated. Our previous study revealed that extractable organic matter (EOM) from PM2.5 exerted cardiac developmental toxicity in zebrafish embryos. The aim of the current study is to explore the effects of EOM on cardiac differentiation of P19 mouse embryonic carcinoma stem cells. We found that EOM at 10 μg/ml (a non-cytotoxic dose level) significantly reduced the proportion of cardiac muscle troponin (cTnT) positive cells and the percentage of spontaneously beating embryoid bodies, indicating a severe inhibition of cardiac differentiation. Immunofluorescence and qPCR data demonstrated that EOM increased the expression levels of the aryl hydrocarbon receptor (AhR) and its target gene Cyp1A1 and diminished the expression level of β-catenin. Furthermore, EOM treatment significantly upregulated cell proliferation rate and elevated the percentage of γH2A.X positive cells without affecting apoptosis. It is worth noting that the EOM-induced changes in gene expression, cellular proliferation and DNA double strain breaks were attenuated by the AhR antagonist CH223191. In conclusion, our data indicate that AhR mediates the inhibitory effects of EOM (from PM2.5 ) on the cardiac differentiation of P19 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app