Add like
Add dislike
Add to saved papers

Antibacterial ability, cytocompatibility and hemocompatibility of fluorinated graphene.

Graphene halides are promising two-dimensional systems which have interesting physical and chemical properties. In particular, high quality fluorinated graphene offers a great potential in modulating variable properties by regulating its surface microstructure. Moreover, the fluorine introduction and carbon-fluorine bonding characters will enable some interesting biological response. Here, the biological responses to bacteria and cells of fluorinated graphene were studied. Present work revealed that partially fluorinated graphene behaved satisfactory antibacterial ability. Fluorinated graphene showed well facilitating function to cell adhesion in early period, however, after a longer incubation period, the enhanced intracellular ROS level in rBMSCs on the fully fluorinated graphene gives rise to the decrease of cell viability. It was found that there is no statistical difference in the activity of alkaline phosphatase (ALP) and matrix mineralization of rBMSCs on pristine graphene, partially fluorinated graphene and fluorographene. In addition, the introduction of fluorine into pristine graphene plane reduced the adhesion and aggregation of blood platelets due to the attenuation of π-π interaction between material surface and blood protein. The findings in this work revealed that partial fluorinated graphene exhibited better antibacterial ability and cytocompatibility, outperforming pristine graphene and fluorographene.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app