Add like
Add dislike
Add to saved papers

The influence of the essential oil extracted from hops on monolayers and bilayers imitating plant pathogen bacteria membranes.

Many plant-derived compounds possess antimicrobial, antioxidant and even anticancer activities. Therefore, they are considered as substances that can be used instead of synthetic compounds in various applications. In this work, the essential oil from hop cones was extracted and analyzed, and then its effects on model bacteria membranes were studied to verify whether the hop essential oils could be used as ecological pesticides. The experiments involved surface pressure-area measurements, penetration studies and Brewster angle microscopy (BAM) imaging of lipid monolayers as well as hydrodynamic diameter, zeta potential, steady-state fluorescence anisotropy and Cryo-Transmission Electron Microscopy (cryo-TEM) measurements of liposomes. Finally the bactericidal tests on plant pathogen bacteria Pseudomonas syringae pv. lachrymans PCM 1410 were performed. The obtained results showed that the components of the essential oils from hop cones incorporate into lipid monolayers and bilayers and alter their fluidity. However, the observed effect is determined by the system composition, its condensation and the oil concentration. Interestingly, at a given dose, the effect of the essential oil on membranes was found to stabilize. Moreover, BAM images proved that hop oil prevents the formation of a large fraction of a condensed phase at the interface. Both the studies on model membranes as well as the in vitro tests allow one to conclude that the hop essential oil could likely be considered as the candidate to be used in agriculture as a natural pesticide.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app