Add like
Add dislike
Add to saved papers

The real-time ultrasonography for fusion image in glioma neurosugery.

OBJECTIVES: The aim of study is to evaluate the general performance and efficiency of the using real time intraoperative ultrasound system with Volume Navigation system technology in glioma. Compare glioma intraoperative ultrasound and contrast agent ultrasound images to obtained preoperative MRI with fusion image in a real-time.

PATIENTS AND METHODS: Fifteen patients had been performed fusion imaging involved intraoperative real-time ultrasound and contrast agent ultrasound with preoperative MR imaging including preoperative gadolinium-enhanced MRI from March 2017 to December 2017. The number of tumor was counted online fusion imaging in real time ultrasound with and without preoperative MR. We analyzed ultrasound coplanar MR modalities in real time including tumor location, margin (obscure or defined). In addition, intraoperative ultrasound enhancement pattern was analyzed compare it to preoperative reconstruction gadolinium-enhanced T1-weighted MRI. Two radiologists who made planning ultrasound assessment for the focus lesion based on a 4 scoring system according to the degree of confidence.

RESULTS: Thirteen of fifteen patients whose automatically registration successful intraoperative neurosurgery accepted preoperative MR examination. Seven of fifteen fine-tuning registration phase were performed and satisfactory with fusion image substantially. Intraoperatively, 73.3% (11/15) glioma nodules were definite on conventional B-mode US by a radiologist who doesn't know the MR result before fusion US with MRI. However, 100% tumors were detected on fusion B-mode ultrasound imaging with MRI. Two radiologists evaluated the score between fusion B-mode ultrasound and CEUS with coplanar MRI and had a result that score was upgraded in 69.2% (9/13) and 84.6% (11/13) patients. Inter-observer agreement was significant (kappa value = 1.0, p < 0.001) in B-mode ultrasound fusion image with MRI. Inter-observer agreement was moderate (kappa value = 0. 0.618, p < 0.001) in CEUS fusion image with MRI.

CONCLUSION: Fusion imaging is very useful to detect poor sonographic visibility tumor on fusion B-mode US imaging with MR images. Fusion image may demonstrate multiplane images including same standard and nonstandard MRI and US images to help localize tumor. The additional real time fusion CEUS mode image with MR is a safe method for neurosurgery and the use of CEUS should be considered when fusion B-mode ultrasound imaging alone is not satisfactory for margin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app