Add like
Add dislike
Add to saved papers

Dietary Arginine Supplementation Affects Intestinal Function by Enhancing Antioxidant Capacity of a Nitric Oxide-Independent Pathway in Low-Birth-Weight Piglets.

Journal of Nutrition 2018 November 2
Background: Low-birth-weight (LBW) neonates are susceptible to intestinal dysfunction. Furthermore, the antioxidant capacity of LBW neonates is significantly lower compared with that of normal-birth-weight (NBW) neonates both at birth and at weaning. In LBW neonates, dietary supplementation with arginine has shown beneficial effects on intestinal function.

Objective: The present study explored the potential mechanisms of arginine-induced protective effects against intestinal dysfunction in LBW piglets.

Methods: Forty 4-d-old LBW piglets [body weight (BW): 1.05 ± 0.04 kg] (Large White × Landrace) were assigned to 4 treatments and artificially fed a whole-milk powder- and whey protein concentrate-based diet (containing 0.65% arginine) either not supplemented with arginine (LBWC) or supplemented with 0.5%, 1.0%, or 1.5% l-arginine for 21 d. In addition, 10 NBW siblings (BW: 1.96 ± 0.03 kg) were selected and fed the basal diet. Growth performance, intestinal morphology, mRNA expression of tight junction protein, redox-sensitive genes and nitric oxide (NO) synthase, cytokines, and redox indexes were determined. Data were subjected to 1-factor ANOVA.

Results: LBW piglets exhibited poorer growth performance (29.9%), lower Claudin1 mRNA level (63.6%), lower antioxidant capacity (22.9 ∼ 24.3%), and higher jejunum interleukin 1 (IL-1) concentration (18.8%) compared with NBW piglets. Dietary supplementation with 0.5% and 1.0% l-arginine significantly enhanced daily BW gain of LBW piglets by 13.6% and 18.2%, respectively. Compared with LBWC, dietary supplementation with 1.0% l-arginine increased the serum insulin concentration (32.2%) and villus height in the jejunum (12.2%) and ileum (20.5%). In the jejunum, the mRNA levels for Claudin1 (105%) and glutathione peroxidase (36%) were higher, and the concentrations of IL-1 (31.7%) and tumor necrosis factor α (TNF-α) (30%) were lower in arginine-treated piglets than in the LBWC group. However, NO synthase activity and NO concentration in the jejunum of LBW piglets were not influenced by l-arginine supplementation.

Conclusion: The results suggested that supplementation with 1.0% l-arginine not only promoted growth performance and improved intestinal functions in LBW piglets but also improved intestinal barrier functions and enhanced antioxidant capacity by an NO-independent pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app