Journal Article
Review
Add like
Add dislike
Add to saved papers

Carbachol-Induced theta-like oscillations in the rodent brain limbic system: Underlying mechanisms and significance.

Theta oscillations (4-12 Hz) represent one of the most prominent physiological oscillatory activity in the mammalian EEG. They are observed in several areas of the hippocampus and in parahippocampal structures. Theta oscillations play important roles in modulating synaptic plasticity during memory and learning; moreover, they are dependent on septal cholinergic inputs. Theta oscillations can be reproduced in vitro in several regions of the temporal lobe in the absence of the septum by employing the cholinergic agonist carbachol (CCh). Here, we review the mechanisms underlying CCh-induced theta oscillations. We address: (i) the ability of temporal lobe neuronal networks to oscillate independently at theta frequency during CCh treatment; (ii) the contribution of intrinsic ionic currents; (iii) the participation of principal cells and interneurons; and (iv) their pharmacological profiles. We also discuss the similarities between CCh-induced theta oscillations and physiological type II theta activity, as well as their roles in synaptic plasticity. Finally, we consider experimental evidence pointing to the contribution of spontaneous and CCh-induced theta activity to epileptiform synchronization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app