Add like
Add dislike
Add to saved papers

Enzymes of pyrimidine salvage pathways in intraerythrocytic Plasmodium falciparum.

Malaria remains a significant public health problem worldwide with an estimated annual global incidence of 200 million and an estimated 450,000 annual deaths. Among the five known human malarial species, Plasmodium falciparum is the deadliest and most resistant to antimalarials. Hence, there is a need for new antimalarial targets. The rational design of a drug is usually based on biochemical and physiological differences between pathogens and their hosts. In view of their high rate of replication, parasites require very active nucleic acid synthesis which necessitates large supplies of the indispensable pyrimidine nucleotides. Consequently, delineation of P. falciparum pyrimidine metabolic pathways may reveal potential targets for the chemotherapy of malaria. Previous studies reported the existence of pyrimidine de novo pathways in this organism. The present results demonstrate the presence of enzymes of the pyrimidine salvage pathways in P. falciparum and indicate that this parasite is capable of pyrimidine salvage. Furthermore, some of the pyrimidine salvage enzymes, e.g., dTMP kinase, phosphoribosyltransferase, and uridine phosphorylase could be excellent targets for chemotherapeutic intervention against this parasite.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app