Add like
Add dislike
Add to saved papers

PLUG (Pruning of Local Unrealistic Geometries) removes restrictions on biophysical modeling for protein design.

Proteins 2018 October 32
Protein design algorithms must search an enormous conformational space to identify favorable conformations. As a result, those that perform this search with guarantees of accuracy generally start with a conformational pruning step, such as dead-end elimination (DEE). However, the mathematical assumptions of DEE-based pruning algorithms have up to now severely restricted the biophysical model that can feasibly be used in protein design. To lift these restrictions, I propose to prune local unrealistic geometries (PLUG) using a linear programming-based method. PLUG's biophysical model consists only of well-known lower bounds on interatomic distances. PLUG is intended as pre-processing for energy-based protein design calculations, whose biophysical model need not support DEE pruning. Based on 96 test cases, PLUG is at least as effective at pruning as DEE for larger protein designs-the type that most require pruning. When combined with the LUTE protein design algorithm, PLUG greatly facilitates designs that account for continuous entropy, large multistate designs with continuous flexibility, and designs with extensive continuous backbone flexibility and advanced non-pairwise energy functions. Many of these designs are tractable only with PLUG, either for empirical reasons (LUTE's machine learning step achieves an accurate fit only after PLUG pruning), or for theoretical reasons (many energy functions are fundamentally incompatible with DEE). This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app