Add like
Add dislike
Add to saved papers

Structural transition pathway and bipolar switching of the GeTe-Sb 2 Te 3 superlattice as interfacial phase-change memory.

Faraday Discussions 2018 October 32
We investigated the resistive switching mechanism between the high-resistance state (HRS) and the low-resistance state (LRS) of the GeTe-Sb2Te3 (GST) superlattice. First-principles calculations were performed to identify the structural transition pathway and to evaluate the current-voltage (I-V) characteristics of the GST device cell. After determining the atomistic structures of the stable structural phases of the GST superlattice, we found the structural transition pathways and the transition states of possible elementary processes in the device, which consisted of a thin film of GST superlattice and semi-infinite electrodes. The calculations of the I-V characteristics were examined to identify the HRS and the LRS, and the results reasonably agreed with those of our previous study (H. Nakamura, et al., Nanoscale, 2017, 9, 9286). The calculated HRS/LRS and analysis of the transition states of the pathways suggest that a bipolar switching mode dominated by the electric-field effect is possible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app