Add like
Add dislike
Add to saved papers

Intra-articular autologous uncultured adipose-derived stromal cell transplantation inhibited the progression of cartilage degeneration.

The role of uncultured adipose-derived stromal cells for osteoarthritis treatment remains unclear despite sporadic reports supporting their use in clinical settings. This study aimed to evaluate the therapeutic effects of autologous uncultured adipose-derived stromal cell transplantation in a rabbit osteoarthritis model. Uncultured adipose-derived stromal cells isolated from rabbits were administered via intra-articular injection into the knees after osteoarthritis onset. Animals were sacrificed at 8 and 12 weeks after osteoarthritis onset to compare the macroscopic, histological, and immunohistochemical characteristics between the uncultured adipose-derived stromal cell and control groups. Co-culture assay was also performed. The chondrocytes isolated from the model were co-cultured with adipose-derived stromal cells. The cell viability of chondrocytes and expression of chondrocyte-specific genes in the co-culture (uncultured adipose-derived stromal cell) group were compared with the mono-culture (control; chondrocytes only) group. In macroscopic and histological analyses, the uncultured adipose-derived stromal cell group showed less damage to the cartilage surface than the control group at 8 and 12 weeks after osteoarthritis onset. In immunohistochemical and co-culture assay, the uncultured adipose-derived stromal cell group showed higher expression of collagen type II and SRY box-9 and lower expression of matrix metalloproteinase-13 than the control group. The cell viability of chondrocytes in the uncultured adipose-derived stromal cell group was higher than that in the control group. Intra-articular autologous uncultured adipose-derived stromal cell transplantation inhibited the progression of cartilage degeneration in a rabbit osteoarthritis model by regulating chondrocyte viability and secreting chondrocyte-protecting cytokines or growth factors, which promote anabolic factors and inhibit catabolic factors. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app