Add like
Add dislike
Add to saved papers

Early Diffusion-Weighted Imaging and Proton Magnetic Resonance Spectroscopy Features of Liver Transplanted Tumors Treated with Radiation in Rabbits: Correlation with Histopathology.

Radiation Research 2018 October 31
In this study, we sought to determine how diffusion-weighted imaging (DWI) and proton magnetic resonance spectroscopy (1 H-MRS) features are associated with histopathological results, and explored the cellular mechanisms of DWI and 1 H-MRS in early radiosensitivity of transplanted liver tumors. VX2 tumors were implanted into the hind leg muscles of 60 New Zealand White Rabbits. All rabbits were randomly divided into ten subgroups according to treatment: irradiated or nonirradiated and according to different times postirradiation. Magnetic resonance scanning was then performed one day before irradiation and on days 1, 3, 5 and 7 postirradiation. Differences in tumor volume, apparent diffusion coefficient (ADC) value, choline/creatine ratio and lipid/creatine ratio, and their associations with histopathological findings, were assessed. Tumor volumes in the irradiated groups were smaller than control values, while ADC values increased gradually with time postirradiation; choline/creatine ratios were reduced while lipid/creatine ratios were larger compared to control values. Bax protein levels after irradiation increased with time. Interestingly, the ADC value and Bax-positive grade showed the same increasing trend (r = 0.900, P < 0.001). Additionally, choline/creatine and lipid/creatine ratios were respectively significantly associated with Bax-positive grade. Furthermore, significant associations of tumor volume with ADC value, choline/creatine ratio and lipid/creatine ratio were observed. These findings demonstrated that ADC value, choline/creatine ratio and lipid/creatine ratio, indicators of early radiosensitivity, are related to cell apoptosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app