Add like
Add dislike
Add to saved papers

A Nonpresodiate Sodium-Ion Capacitor with High Performance.

Small 2018 October 31
Sodium-ion capacitors (SICs) have received intensive attention due to their high energy density, high power density, long cycle life, and low cost of sodium. However, the lack of high-performance anode materials and the tedious presodiation process hinders the practical applications of SICs. A simple and effective strategy is reported to fabricate a high-performance SIC using Fe1- x S as the anode material and an ether-based electrolyte. The Fe1- x S electrode is found to undergo a reversible intercalation reaction after the first cycle, resulting in fast kinetics and excellent reversibility. The Fe1- x S electrode delivers a high capacity of 340 mAh g-1 at 0.05 A g-1 , 179 mAh g-1 at high current of 5 A g-1 and an ultralong cycling performance with 95% capacity retention after 7000 cycles. Coupled with a carbon-based cathode, a high-performance SIC without the presodiation process is successfully fabricated. The hybrid device demonstrates an excellent energy density of 88 Wh kg-1 and superior power density of 11 500 W kg-1 , as well as an ultralong lifetime of 9000 cycles with over 93% capacity retention. An innovative and efficient way to fabricate SICs with both high energy and power density utilizing ether-based electrolytes can be realized to eliminate the presodiation process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app