Journal Article
Review
Add like
Add dislike
Add to saved papers

Single-Nanostructured Electrochemical Detection for Intrinsic Mechanism of Energy Storage: Progress and Prospect.

Small 2018 October 31
Energy storage appliances are active by means of accompanying components for renewable energy resources that play a significant role in the advanced world. To further improve the electrochemical properties of the lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), and lithium-sulfur (Li-S) batteries, the electrochemical detection of the intrinsic mechanisms and dynamics of electrodes in batteries is required to guide the rational design of electrodes. Thus, several researches have conducted in situ investigations and real-time observations of electrode evolution, ion diffusion pathways, and side reactions during battery operation at the nanoscale, which are proven to be extremely insightful. However, the in situ cells are required to be compatible for electrochemical tests and are therefore often challenging to operate. In the past few years, tremendous progresses have been made with novel and more advanced in situ electrochemical detection methods for mechanism studies, especially single-nanostructured electrodes. Herein, a comprehensive review of in situ techniques based on single-nanostructured electrodes for studying electrodes changes in LIBs, SIBs, and Li-S batteries, including structure evolution, phase transition, interface formation, and the ion diffusion pathway is provided, which is instructive and meaningful for the optimization of battery systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app