Add like
Add dislike
Add to saved papers

Postprandial glycaemia-lowering effect of a green tea cultivar Sunrouge and cultivar-specific metabolic profiling for determining bioactivity-related ingredients.

Scientific Reports 2018 October 31
Although the major green tea catechins can inhibit the activity of carbohydrate-hydrolyzing enzymes, there is a paucity of information describing the potential of other green tea ingredients and numerous green tea cultivars. Herein, we reveled that a green tea cultivar Sunrouge significantly suppressed the postprandial blood glucose level in mice. Unlike the most representative Japanese green tea cultivar, Yabukita, the suppression by Sunrouge was observed clearly during the initial period after oral dosing of starch. Sunrouge also strongly inhibited the carbohydrate-hydrolyzing enzymes α-glucosidase and α-amylase when compared with that of Yabukita and many other cultivars. Liquid chromatography-mass spectrometry (LC-MS)-based metabolic profiling (MP) of 42 Japanese green tea cultivars was performed. Multivariate statistical analysis enabled visualization of the differences among cultivars with respect to their ability to inhibit carbohydrate-hydrolyzing activities. Analysis of metabolites, contributing to the discrimination and prediction of the bioactivity of cultivars, showed that O-methylated catechins, epicatechin-3-O-(3-O-methyl) gallate (ECG3"Me) and epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3"Me), were newly identified α-glucosidase inhibitors. Such ability was also observed in epigallocatechin-3-O-gallate (EGCG), epicatechin-3-O-gallate (ECG), delphinidin-3-O-glucoside and myricetin-3-O-glucoside. The amounts of these compounds in Sunrouge were higher than that in many other cultivars. These results suggest that Sunrouge has high potential for suppressing the elevation of the postprandial blood glucose level, and an MP approach may become a valuable strategy for evaluating the anti-hyperglycemic activity of green tea and for screening its active ingredients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app