Add like
Add dislike
Add to saved papers

PF11 Alleviates Oligomeric β-Amyloid-Induced Endosome-Lysosome Defects in Microglia.

Traffic 2018 October 30
Amyloid accumulation in the brain is the major pathological hallmark of Alzheimer's disease (AD). Amyloid beta (Aβ) is cleared by the endosomal-autophagy-lysosomal system, which is impaired in AD pathogenesis by an unknown mechanism. Pseudoginsenoside-F11 (PF11), an ocotillol-type ginsenoside, has been demonstrated to decrease the level of Aβ in APP/PS1 mouse brain and to protect neurons by inhibiting the activation of microglia in vitro. The present study showed that PF11 was capable of increasing the uptake and degradation of oligomeric Aβ in cultured microglia. Oligomeric Aβ (oAβ) interrupted the autophagy-lysosomal degradative system by regulating the nuclear translocation of TFEB, a master factor in lysosomal biogenesis. Conversion of Rab5 to Rab7, which is important for the mechanism of cargo progression from early to late endosomes, was also interrupted by high-concentration oAβ. Notably, in the PF11-treated microglial cells, a dramatic increase of the lysosome-associated proteins and enzymes expression were observed, along with the intracellular pH steady state, indicating the improvement of lysosomal function. In addition, PF11 induced TFEB nuclear translocation in microglia treated with high-concentration oAβ. Furthermore, PF11 was able to restored Rab conversion, suggesting an effective role of PF11 in the maturation of endosomes. These data provide evidence that PF11 can reverse the dysfunction of the endosomal-lysosomal system induced by high-concentration oAβ in microglia, and this might be the main mechanism by which PF11 facilitates oAβ clearance. Accordingly, we propose that PF11 should be considered as a potential agent for treating AD. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app