Add like
Add dislike
Add to saved papers

Might hyperbaric oxygen therapy (HBOT) reduce renal injury in diabetic people with diabetes mellitus? From preclinical models to human metabolomics.

Diabetic kidney disease (DKD) is the leading cause of end-stage renal failure in the western world. Current treatment of diabetic kidney disease relies on nutritional management and drug therapies to achieve metabolic control. Here, we discuss the potential application of hyperbaric oxygen therapy (HBOT) for the treatment of diabetic kidney disease (DKD), a treatment which requires patients to breathe in 100% oxygen at elevated ambient pressures. HBOT has traditionally been used to diabetic foot ulcers (DFU) refractory to conventional medical treatments. Successful clinic responses seen in the DFU provide the underlying therapeutic rationale for testing HBOT in the setting of DKD. Both the DFU and DKD have microvascular endothelial disease as a common underlying pathologic feature. Supporting evidence for HBOT of DKD comes from previous animal studies and from our preliminary prospective clinical trial reported here. We report urinary metabolomic data obtained from patients undergoing HBOT for DFU, before and after exposure to 6 weeks of HBOT. The preliminary data support the concept that HBOT can reduce biomarkers of renal injury, oxidant stress, and mitochondrial dysfunction in patients receiving HBOT for DFU. Further studies are needed to confirm these initial findings and correlate them with simultaneous measures of renal function. HBOT is a safe and effective treatment for DFU and could also be for individuals with DKD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app