Add like
Add dislike
Add to saved papers

Chemokine-like receptor 1 deficiency leads to lower bone mass in male mice.

The adipokine Chemerin and its receptor, chemokine-like receptor 1 (CMKLR1), are associated with osteoblastogenic differentiation of mesenchymal stem cells (MSCs) and osteoclastogenic differentiation of osteoclast precursors in vitro, suggesting that CMKLR1 would affect the bone mineral density (BMD). However, the role of CMKLR1 on BMD in vivo remains unknown. Here, using CMKLR1 knockout mouse model, we unveiled that CMKLR1 effected the amount of Leydig cells in testis and regulated androgen-dependent bone maintenance in male mice, which exhibited lower serum testosterone levels, thereby reducing the trabecular bone mass. Correspondingly, the mRNA expression of testosterone synthesis enzymes in testis decreased. The bone tissue also showed decreased mRNAs expression of osteogenic markers and increased mRNA levels for osteoclast markers. Furthermore, by in vitro differentiation models, we found CMKLR1-deficiency could break the balance between osteoblastogenesis and osteoclastogenesis that caused a shift from osteogenic to adipogenic differentiation in MSCs and enhanced osteoclast formation. In addition, bone mass increase in CMKLR1 KO male mice can be promoted by treatment with 5α-dihydrotestosterone (DHT), and the inactivation of CMKLR1 in male wild-type (WT) mice with antagonist treatment can lead to low bone mass. Taken together, these data indicate that CMKLR1 positively regulates bone metabolism through mediating testosterone production and the balance between osteoblast and osteoclast formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app