Add like
Add dislike
Add to saved papers

The association between diabetes mellitus and reduction in myocardial glucose uptake: a population-based 18 F-FDG PET/CT study.

BACKGROUND: In diabetes, dysregulated substrate utilization and energy metabolism of myocardium can lead to heart failure. To examine the dynamic changes of myocardium, most of the previous studies conducted dynamic myocardial PET imaging following euglycemic-hyperinsulinemic clamp, which involves complicated procedures. In comparison, the whole-body 18 F-FDG PET/CT scan is a simple and widely used method. Therefore, we hope to use this method to observe abnormal myocardial glucose metabolism in diabetes and determine the influencing factors.

METHODS: We retrospectively analyzed PET/CT images of 191 subjects from our medical examination center. The levels of FDG uptake in myocardium were visually divided into 4 grades (Grade 0-3, from low to high). The differences in clinical and metabolic parameters among diabetes mellitus (DM), impaired fasting glucose (IFG), and normal fasting glucose (NFG) groups were analyzed, as well as their associations with myocardial FDG uptake.

RESULTS: Compared with NFG and IFG groups, DM group had more cardiovascular-related risk factors. The degree of myocardial FDG uptake was significantly decreased in DM group; when myocardial FDG uptake ≤ Grade 1, the sensitivity of DM prediction was 84.0%, and the specificity was 58.4%. Univariate analysis showed that the myocardial FDG uptake was weakly and negatively correlated with multiple metabolic-related parameters (r = - 0.173~ - 0.365, P < 0.05). Multivariate logistic regression analysis showed that gender (male), HOMA-IR and nonalcoholic fatty liver disease (NAFLD) were independent risk factors for poor myocardial FDG uptake.

CONCLUSIONS: Diabetes is associated with decreased myocardial glucose metabolism, which is mediated by multiple metabolic abnormalities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app