Add like
Add dislike
Add to saved papers

Differential Effects of Doxazosin on Renin-Angiotensin-System-Regulating Aminopeptidase Activities in Neuroblastoma and Glioma Tumoral Cells.

BACKGROUND: It has been described that doxazosin, an antihypertensive drug, also promotes glioblastoma cells death by inhibiting cell proliferation, arresting cell cycle and inducing apoptosis. Doxazosin has also demonstrated several modulator effects on renin-angiotensin system (RAS)-regulating aminopeptidase activities, which are highly involved in tumor growth in experimental glioma. Therefore, it remains to elucidate if the anti-tumoral effects of doxazosin could be also mediated by the proteolytic regulatory components of the RAS.

OBJECTIVE: To analyze the effects of doxazosin on cell growth and on RAS-regulating proteolytic regulatory aspartyl aminopeptidase (ASAP), aminopeptidase A (APA), aminopeptidase N (APN), aminopeptidase B (APB) and insulin-regulated aminopeptidase (IRAP) specific activities in the human neuroblastoma NB69 and astroglioma U373-MG tumoral cell lines.

METHODS: Human neuroblastoma NB69 and astroglioma U373-MG cell lines were treated with doxazosin 50-500 μM for 24h or 48h. The effects on cell growth and on RAS-regulating aminopeptidase specific activities were analyzed.

RESULTS: Doxazosin treatments promote a concentration-dependent inhibition on cell growth in both NB69 and U373-MG cells, being NB69 cells more sensitive to the drug than U373-MG cells. However, its effects on RAS-regulating aminopeptidase specific activities depend on the concentration used, the duration of the treatment and the cell type. These data confirms the existence of a different dynamic progression of RAS cascade in each tumoral cell line as a consequence of the treatment with doxazosin and time of action, which also implies a very dynamic metabolism of the peptides which participate in each step of RAS cascade.

CONCLUSION: Our results indicate that doxazosin modifies the proteolytic regulatory enzymes of RAS cascade, modulating the bioactive efficacy of the different angiotensin peptides, and therefore, of their functional roles as initiators/promoters of cell proliferation as autocrine/paracrine mediators.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app