Add like
Add dislike
Add to saved papers

Training Lightweight Deep Convolutional Neural Networks Using Bag-of-Features Pooling.

Convolutional neural networks (CNNs) are predominantly used for several challenging computer vision tasks achieving state-of-the-art performance. However, CNNs are complex models that require the use of powerful hardware, both for training and deploying them. To this end, a quantization-based pooling method is proposed in this paper. The proposed method is inspired from the bag-of-features model and can be used for learning more lightweight deep neural networks. Trainable radial basis function neurons are used to quantize the activations of the final convolutional layer, reducing the number of parameters in the network and allowing for natively classifying images of various sizes. The proposed method employs differentiable quantization and aggregation layers leading to an end-to-end trainable CNN architecture. Furthermore, a fast linear variant of the proposed method is introduced and discussed, providing new insight for understanding convolutional neural architectures. The ability of the proposed method to reduce the size of CNNs and increase the performance over other competitive methods is demonstrated using seven data sets and three different learning tasks (classification, regression, and retrieval).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app