Add like
Add dislike
Add to saved papers

Toward a highly sensitive polymer waveguide fiber Fabry-Pérot ultrasound detector.

In recent times, there has been extensive research on fiber-optic imaging devices in order to enable imaging/sensing at a size scale inaccessible to other modalities. The design for fabrication of a highly sensitive fiber-optic ultrasound detector is proposed. The transducer employs a polymer Fabry-Pérot resonator for ultrasound detection. To enhance acoustic sensitivity, a method is proposed for fabricating a self-aligned polymer waveguide within the cavity to improve the resonator quality factor (Q-factor). Simulation studies were conducted to evaluate feasibility and quantify the improvement in Q-factor for different transducer configurations. Results show that with dielectric mirrors and a waveguide, Q-factor can approach the order of 10,000. Additional simulation studies are presented to analyze the effect of cavity shape on the device performance, drawing out the importance of a flat mirror for waveguided devices. Subsequently, results from optical testing of the first iteration of fabricated devices are presented, highlighting the main drawback of this method-the nonideal shape of the waveguiding pillar. Finally, initial results from the second iteration of devices that overcome this drawback are presented, demonstrating the feasibility of creating straight self-aligned polymer waveguides on gold-coated fibers, followed by a discussion on the implications of this work and future steps.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app