Add like
Add dislike
Add to saved papers

TET2-mediated spatiotemporal changes of 5-hydroxymethylcytosine during organogenesis in the late mouse fetus.

Genomic DNA demethylation is important for mammalian embryonic development and organ function. 5-hydroxymethylcytosine (5hmC) is considered a novel epigenetic marker. Ten-eleven translocation (TET) enzymes convert 5-methylcytosine (5mC) to 5hmC. To explore the dynamic changes of epigenetic modifications during organogenesis in the late mouse fetus, the regional distribution and histological localization of 5hmC and TET enzymes was investigated by immunohistochemical method. The liver of mouse fetus gradually matured from embryonic day (E) 12.5 to E18.5.5mC was positive in developing liver at E16.5 and E18.5. 5hmC, TET2 and TET3 were strongly positive in hepatocytes and oval cells at E18.5. The small intestinal villi were formed at E16.5. The striate border and goblet cells appeared at E18.5. 5mC was detectable from E12.5 to E18.5. 5hmC and TET2 were positive in small intestine at E12.5, E14.5 and E18.5. The alveolar was formed at E18.5. 5mC and 5hmC were detectable from E12.5 to E18.5. Only TET2 was positive in the lung of the late Kunming mouse fetus. For vertebra, mesenchymal cells formed hyaline cartilage at E15.5 and then ossify at E16.5 and E18.8. 5mC, 5hmC and TET2 were detectable in chondrocytes and osteocytes during the late Kunming mouse fetal; TET1 expressed from E14.5 to E16.5 and TET3 expressed in bone matrix at E18.5. In summary, TET2 was strongly expressed in liver, small intestinal, lung and vertebra in the late Kunming mouse fetus. These findings suggested that TET2 may play a more critical role than TET1 and TET3 during organogenesis in the late stage of Kunming mouse embryo. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app