Add like
Add dislike
Add to saved papers

DNA compositional dynamics and codon usage patterns of M1 and M2 matrix protein genes in influenza A virus.

Influenza A virus subtype H3N2 has been a serious health issue across the globe with approximately 36 thousand annual casualties in the United States of America only. Co-circulation in avian, swine and human hosts has led to frequent mutations in the virus genome, due to which development of successful antivirals against the virus has become a formidable challenge. Recently, focussed research is being carried out targeting the matrix proteins of this strain as vaccine candidates. This study is carried out to unravel the key features of the genes encoding the matrix proteins that manoeuvre the codon usage profile in the H3N2 strains. The findings reveal differential codon choice for both matrix protein 1 and matrix protein 2. The overall codon usage bias is less pronounced in both the datasets which is evident from higher value of effective number of codons (>55). Comparison of the codon usage for both the genes under study with that of humans revealed that the viral codon usage is not fully optimized for the human host conditions. Both the genes enrolled in the study showed variation which was reflected in almost all the indices used for codon usage studies. Neutrality analysis revealed a weak role of mutation pressure while selection was the major contributor towards codon usage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app