Add like
Add dislike
Add to saved papers

OnlyParahydrogen SpectrosopY (OPSY) pulse sequences - One does not fit all.

The hyperpolarization of nuclear spins using parahydrogen is an interesting effect that allows to increase the magnetic resonance signal by several orders of magnitude. Known as ParaHydrogen And Synthesis Allow Dramatically Enhanced Nuclear Alignment (PASADENA) and ParaHydrogen Induced Polarization (PHIP), the method was successfully used for in vitro analysis and in vivo imaging. In this contribution, we investigated four known and four new variants of Only Parahydrogen SpectroscopY (OPSY) sequences (Aguilar et al., 2007) with respect to the selective preparation of hyperpolarized NMR signal and background suppression. Depending on the method chosen, either anti-phase, in-phase or a mixture of both signals are obtained: anti-phase signals are beneficial to identify hyperpolarized signals and the structure or J-coupling constants; in-phase signals are useful for imaging applications or when the lines are broad. This comprehensive overview of sequences new and old facilitates selecting the right sequence for the task at hand.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app