Add like
Add dislike
Add to saved papers

CHARMM force field for protonated polyethyleneimine.

We present a revised version of our previously published atomistic Chemistry at Harvard Macromolecular Mechanics (CHARMM) force field for polyethyleneimine (PEI). It is based on new residue types (with symmetric CNC backbone), whose integer charges and bonded parameters are derived from ab initio calculations on an enlarged set of model polymers. The force field is validated by extensive molecular dynamics simulations on solvated PEI chains of various lengths and protonation patterns. The profiles of the gyration radius, end-to-end distance, and diffusion coefficient fine-tune our previous results, while the simulated diffusion coefficients excellently reproduce experimental findings. The developed CHARMM force field is suitable for realistic atomistic simulations of size/protonation-dependent behavior of PEI chains, either individually or composing polyplexes, but also provides reliable all-atom distributions for deriving coarse-grained force fields for PEI. © 2018 Wiley Periodicals, Inc.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app