Add like
Add dislike
Add to saved papers

A Bioinformatic Profile of Gene Expression of Colorectal Carcinoma Derived Organoids.

Colorectal carcinoma is one of the common cancers in human. It has been intensely debated whether the in vitro cancer cell lines are closely enough for recapitulating the original tumor in understanding the molecular characteristic of CRC. Organoid as a new in vitro 3D culture system has sprang out in CRC study for the capability in reviving the original tissue. The aim of this study is to profile the gene expression of CRC organoid. The gene expression GSE64392 was from GEO database contained 20-patients-derived 37 organoid samples, including 22 colorectal tumor organoid samples and 15 paired healthy samples. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied for classifying differentially expressed genes (DEGs). Protein interaction among DEGs was analyzed by Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape software. In total, 853 gene sequences were identified. GO analysis revealed that DEGs were extensively involved in various biological process (BP), like proliferation, cell cycle, and biosynthesis. KEEG pathway analysis showed that WNT, MAPK, TGF- β , SHH, ECM-receptor interaction, and FGF pathways were altered. DEGs which were identified with protein interactions were major response for extracellular matrix organization and the GPCR pathway. In conclusion, our study profiled the DEGs in CRC organoids and promotes our understanding of the CRC organoids as a new model for colorectal cancer research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app