Add like
Add dislike
Add to saved papers

One-dimensional experimental investigation and simulation on the transport characteristics of heterogeneous colloidal Mg(OH) 2 in saturated porous media.

Recent laboratory studies have shown the injection of colloidal Mg(OH)2 could provide an effective and low cost alternative as a long term pH buffering system. In this study, Mg(OH)2 was modified by Tween 80 and SDS and the modified suspension had the properties of high stability, small particle size (the average particle diameter D50 was smaller than 1 μm) and negative charge (zeta potential = -14.26 mV at pH = 10.54). All of these properties demonstrated that colloidal Mg(OH)2 may have satisfactory transport performance in porous media. However, colloidal Mg(OH)2 is heterogeneous colloids with a high concentration, the transport performance in porous media is significantly different from homogeneous colloids, and the model simulation is relatively complex. To solve these problems, method of calculus combined with colloid filtration theory (CFT), T-E equation and modified Maxwell theory was used to simulate the transport performance of high concentration of Mg(OH)2 colloids. Results indicated that the observed experimental results matched well with the model simulations. Hydrodynamic force, DLVO attractive force and colloid diffusion are the major factors controlling the migration of colloidal Mg(OH)2 in porous media and could quantitatively describe the influence of injection velocity, porous media size and ionic strength on colloidal Mg(OH)2 transport properties by model calculation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app