Add like
Add dislike
Add to saved papers

Synthesis and Optical Applications of Periodic Mesoporous Organosilicas.

Enzymes 2018
Periodic mesoporous organosilicas (PMOs), synthesized via surfactant-directed self-assembly of a polysilylated organic precursor (R[Si(OR')3 ]n ; n≥2, R: organic group), are promising candidates such as catalysts and adsorbents, and for use in optical and electrical devices, owing to their high surface area, well-defined nanoporous structure, and highly functional organosilica framework. Their framework functionality can be widely tuned by selecting appropriate organic groups and controlling their arrangement. This chapter describes the synthesis and structure of PMOs with simple organic groups such as ethane and benzene, and the unique properties and optical applications of functional PMOs. Special light-harvesting properties and their exploitation in photocatalysis, highly emissive PMOs and their application to color-tunable transparent films, hole-transporting PMOs and their use in organic solar cells, and PMOs containing chelating ligands and their use as solid supports for heterogeneous metal complex catalysis are described.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app