Add like
Add dislike
Add to saved papers

Synthesis and Evaluation of Antifungal and Antitrypanosomastid Activities of Symmetrical 1,4-Disubstituted-1,2,3-Bistriazoles Obtained by CuAAC Conditions.

Medicinal Chemistry 2018 October 25
BACKGROUND: The trypanosomatids, such as the protozoan Leishmania spp., have a demand by ergosterol, which is not present in the membrane from mammal cells. The suppression of the synthesis of ergosterol would be a new target of compounds with leishmanicidal activity, and bistriazole has showed trypanocidal activity by this mechanism. The incidence of fungal infections has increased at an alarming rate over the last decades. This is related both to the growing population of immune-compromised individuals and to the emergence of strains that are resistant to available antifungals. Therefore, there is a challenge for the search of potential new antifungal agents.

OBJECTIVE: the study aimed to synthesized 1,4-disubstituted-1,2,3-bistriazoles by optimized copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) and evaluate their antifungal and antitrypanosomastid activities.

METHOD: The synthesis of symmetrical bistriazoles with diazides as spacers was planned to be performed following the CuAAC reaction strategy. For evaluation of best conditions to synthesis of symmetrical bistriazoles hex-1-yne 2 was choose as leading compound, and a variety of catalyst were employed, choosing (3:1) alkyne:diazide stoichiometric relationship employing CuSO4.5H2O as best condition. For the preparation of diversity in the synthesis of symmetrical bistriazoles, a 1,3-diazide-propan-2-ol 1a and 1,3-diazidepropane 1b were reacted with seven different alkynes, furnishing eleven symmetrical bistriazoles 9-13a,b and 14a. All compounds were essayed to cultures of promastigotes of L. amazonensis (1 x 106 cells mL-1) in the range of 0.10 - 40.00 µg mL-1 and incubated at 25ºC. After 72 h of incubation, the surviving parasites were counted. To antifungal essay the minimum inhibitory concentrations (MIC) for yeasts and filamentous fungi were determined. Each compound was tested in 10 serial final concentrations (64 to 0.125 g mL-1).

RESULTS: eleven 1,4-disubstituted-1,2,3-bistriazoles were synthesized and their structures were confirmed by IR, 1H and 13C-NMR and Mass spectral analysis. The antifungal and antitrypanosomastid activities were evaluated. The best result to antifungal activity was reached by bistriazole 11a, that showed the same MIC of fluconazole (32 µg mL-1) against Candida krusei ATCC 6258, an emerging and potentially multidrug-resistant fungal pathogen. Due their intrinsically biological activity versatility, five derivatives compounds showed leishmanicidal inhibitory activity between 15.0 and 20.0% at concentrations of 20 and 40.0 µg mL-1. Among these compounds the derivative 13a showed best IC50 value of 63.34 µg mL-1 (182.86 µM).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app