Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hybrid method combining superpixel, random walk and active contour model for fast and accurate liver segmentation.

Organ segmentation is an important pre-processing step in surgery planning and computer-aided diagnosis. In this paper, we propose a fast and accurate liver segmentation framework. Our proposed method combines a knowledge-based slice-by-slice Random Walk (RW) segmentation algorithm (proposed in our previous work) with a superpixel algorithm called the Contrast-enhanced Compact Watershed (CCWS) method to reduce computing time and memory costs. Compared to the commonly used Simple Linear Iterative Clustering (SLIC), we demonstrate that our CCWS is more appropriate for liver segmentation. To improve the methods accuracy, we use a modified narrow band active contour model as a refinement after the initial segmentation. The experiments showed that the superpixel-based slice-by-slice RW could segment the entire liver with improved speed, and the modified active contour model is more precise than the original Chan-Vese Model. As a result, the proposed framework is able to quickly and accurately segment the entire liver.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app