Add like
Add dislike
Add to saved papers

Hole accumulation effect on Laser-assisted field evaporation of insulators.

Ultramicroscopy 2019 January
Current issues associated with laser-assisted atom probe tomography of insulators are addressed by investigating laser-induced carrier dynamics and field evaporation kinetics. It is shown that for typical insulators with slow carrier recombination compared to the sub-picosecond laser pulse, hole accumulation at the surface plays a key role. By carrying out density functional theory calculations on a MgO cluster, it is found that the critical evaporation field strength decreases linearly as the surface hole density increases. This phenomenon can be explained by the hole-induced electric field. The evaporation of neutral oxygen is enhanced at low electrostatic field strength and high laser intensity. Theoretical insight is also provided for the non-stoichiometry problem in the mass spectra measured in atom probe tomography of compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app