Add like
Add dislike
Add to saved papers

A stereotaxic MRI template set of mouse brain with fine sub-anatomical delineations: Application to MEMRI studies of 5XFAD mice.

PURPOSE: Manganese-enhanced magnetic resonance imaging (MEMRI) can help us trace the active neurons and neuronal pathway in transgenic mouse AD model. 5XFAD has been widespread accepted as a valuable model system for studying brain dysfunction progresses in the courses of AD. To further understand the development of AD at early stages, an effective and objective data analysis platform for MEMRI studies should be constructed.

MATERIALS AND METHODS: A set of stereotaxic templates of mouse brain in Paxinos and Franklin space, "the Institute of High Energy Physics Mouse Template", or IMT for short, was constructed by iteratively registration and averaging. An atlas image was reconstructed from the Paxinos and Franklin atlas figures and each sub-anatomical segmentation was assigning a unique integer. An analysis SPM plug-in toolbox was further created, that automates and standardizes the time-consuming processes of brain extraction, tissue segmentation, and statistical analysis for MEMRI scans.

RESULTS: The IMT comprised a T2WI template image, a MEMRI template image, intracranial tissue segmentations, and accompany with a digital mouse brain atlas image, in which 707 sub-anatomical brain regions are delineated. Data analyses were performed on groups of developing 5XFAD mice to demonstrate the usage of IMT, and the results shows that abnormal neuronal activity occurs at early stage in 5XFAD mice.

CONCLUSION: We have constructed a stereotaxic template set of mouse brain named IMT with fine delineations of sub-anatomical structures, which is compatible with SPM. It will give a widely range of researchers a standardized coordinate system for localization of any mouse brain related data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app