Add like
Add dislike
Add to saved papers

User Testing an Information Foraging Tool for Ambulatory Surgical Site Infection Surveillance.

BACKGROUND:  Surveillance for surgical site infections (SSIs) after ambulatory surgery in children requires a detailed manual chart review to assess criteria defined by the National Health and Safety Network (NHSN). Electronic health records (EHRs) impose an inefficient search process where infection preventionists must manually review every postsurgical encounter (< 30 days). Using text mining and business intelligence software, we developed an information foraging application, the SSI Workbench, to visually present which postsurgical encounters included SSI-related terms and synonyms, antibiotic, and culture orders.

OBJECTIVE:  This article compares the Workbench and EHR on four dimensions: (1) effectiveness, (2) efficiency, (3) workload, and (4) usability.

METHODS:  Comparative usability test of Workbench and EHR. Objective test metrics are time per case, encounters reviewed per case, time per encounter, and retrieval of information meeting NHSN definitions. Subjective measures are cognitive load using the National Aeronautics and Space Administration (NASA) Task Load Index (NASA TLX), and a questionnaire on system usability and utility.

RESULTS:  Eight infection preventionists participated in the test. There was no difference in effectiveness as subjects retrieved information from all cases, using both systems, to meet the NHSN criteria. There was no difference in efficiency in time per case between the Workbench and EHR (8.58 vs. 7.39 minutes, p  = 0.36). However, with the Workbench subjects opened fewer encounters per case (3.0 vs. 7.5, p  = 0.002), spent more time per encounter (2.23 vs. 0.92 minutes, p  = 0.002), rated the Workbench lower in cognitive load (NASA TLX, 24 vs. 33, p  = 0.02), and significantly higher in measures of usability.

CONCLUSION:  Compared with the EHR, the Workbench was more usable, short, and reduced cognitive load. In overall efficiency, the Workbench did not save time, but demonstrated a shift from between-encounter foraging to within-encounter foraging and was rated as significantly more efficient. Our results suggest that infection surveillance can be better supported by systems applying information foraging theory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app