Add like
Add dislike
Add to saved papers

Regulation of PSII function in Cyanothece sp. ATCC 51142 during a light-dark cycle.

Photosynthesis Research 2018 October 25
Cyanobacteria, as well as green algae and higher plants, have highly conserved photosynthetic machinery. Cyanothece sp. ATCC 51142 is a unicellular, aerobic, diazotrophic cyanobacterium that fixes N2 in the dark. In Cyanothece, the psbA gene family is composed of five members, encoding different isoforms of the D1 protein. A new D1 protein has been postulated in the literature, which blocks PSII during the night and allows the fixation of nitrogen. We present data showing changes in PSII function in cells grown in cycles alternating between 12 h of light and dark, respectively, at Cyanothece sp. ATCC 51142. Cyanothece sp. ATCC 51142 uses intrinsic mechanisms to protect its nitrogenase activity in a two-stage process. In Stage I, immediately after the onset of darkness, the cells lose photosynthetic activity in a reversible process, probably by dissociation of water oxidation complex from photosystem II via a mechanism that does not require de novo protein synthesis. In Stage II, a more severe disruption of photosystem II function occurs is in part protein synthesis dependent and it could be a functional signature of the presence of sentinel D1 in a limited number of reaction centers still active or not yet inactivated by the mechanism described in Stage I. This process of inhibition uses light as a triggering signal for both the inhibition of photosynthetic activity and recovery when light returns. The intrinsic mechanism of photosynthetic inactivation during darkness with the interplay of the two mechanisms requires further studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app