Add like
Add dislike
Add to saved papers

Novel resin-based dental material with anti-biofilm activity and improved mechanical property by incorporating hydrophilic cationic copolymer functionalized nanodiamond.

There is an increasing clinical need to design dental restorative materials that combine excellent mechanical property and anti-biofilm activity. In the current study, photocurable polycation functionalized nanodiamond (QND) was synthesized and proposed as novel filler for dental resins. By reason of increased repulsive force between nanoparticles and enhanced compatibility with resin matrix, QND dispersed uniformly in reinforced resins, which would help to transfer stress and deformation from the matrix to fillers more efficiently, resulting in a significant improvement in mechanical properties. Notably, the Vickers's hardness, flexural strength and flexural modulus of resins containing 1.0 wt% QND were 44.5, 36.1 and 41.3% higher than that of control, respectively. The antibacterial activity against Streptococcus mutans (S. mutans) showed that QND-incorporated resins produced anti-adhesive property due to their hydrophilic surfaces and could suppress bacterial growth as a result of the contact-killing effect of embedded nanocomposites. As the synergistic effect of anti-adhesive and bactericidal performance, resins loading 1.0~1.5 wt% QNDs displayed excellent anti-biofilm activity. Meanwhile, the results of macrophage cytotoxicity showed that the proliferation of RAW 264.7 cells remained 84.3%, even at a concentration of 1.0 wt% QNDs after 7-day incubation. Therefore, the QND-containing dental resin with the combination of high mechanical property, bacteria-repellent capability and antibacterial performance holds great potential as a restorative material based on this scheme.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app