Add like
Add dislike
Add to saved papers

Plasmonic Metasurfaces for Switchable Photonic Spin-Orbit Interactions Based on Phase Change Materials.

Metasurfaces with intense spin-orbit interactions (SOIs) offer an appealing platform for manipulation of polarization and wavefront. Reconfigurable beam manipulation based on switchable SOIs is highly desired in many occasions, but it remains a great challenge since most metasurfaces lack the flexibility and the optical performance is fixed once fabricated. Here, switchable SOIs are demonstrated numerically and experimentally via the combination of plasmonic metasurfaces with phase change materials (PCMs). As a proof-of-concept, three metadevices possessing switchable SOIs are fabricated and investigated, which enable spin Hall effect, vortex beam generation, and holography when the PCM is in the amorphous state (corresponding to the "ON" state of SOI). When the PCM changes into the crystalline state (corresponding to the "OFF" state of SOI), these phenomena disappear. Experimental measurements show that a high polarization conversion contrast between "ON" and "OFF" states is obtained within a broadband wavelength range from 8.5 to 10.5 µm. The switchable photonic SOIs proposed here may provide a promising route to design reconfigurable devices for applications such as beam steering, dynamic holographic display, and encrypted optical communications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app