Add like
Add dislike
Add to saved papers

Interfacial Defects Dictated In Situ Fabrication of Yolk-Shell Upconversion Nanoparticles by Electron-Beam Irradiation.

Homogeneous core-shell structured nanoparticles (NPs) are prevailingly designed to accommodate lanthanide emitters, and such an epitaxial shell deposited on core NP is generally believed to help eliminate surface traps or defects on the as-prepared core. However, upon electron-beam irradiation to core-shell-shell NaLuF4 :Gd/Yb/Er@NaLuF4 :Nd/Yb@NaLuF4 upconversion NPs (UCNPs), it is revealed that interfacial defects actually exist at the core-shell and shell-shell interfaces, even with a higher density than the bulk-phase defects in inner core. Because of such higher density of interfacial defects, the kinetic energies transferred from energetic electrons to atoms may trigger the faster Na/F atom ejections and outward atom migrations in the coating layers than in the inner core of NPs, which ultimately results in the in situ formation of novel yolk-shell UCNPs. These findings provide new insights into interfacial defects in homogeneous core-shell structured NaLnF4 NPs, and pave the way toward utilizing the interactions of high-energy particles with materials for in situ fabrication of novel nanostructures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app