Add like
Add dislike
Add to saved papers

Maternal genotype determines kynurenic acid levels in the fetal brain: Implications for the pathophysiology of schizophrenia.

BACKGROUND:: Several studies suggest a pathophysiologically relevant association between increased brain levels of the neuroinhibitory tryptophan metabolite kynurenic acid and cognitive dysfunctions in people with schizophrenia. Elevated kynurenic acid in schizophrenia may be secondary to a genetic alteration of kynurenine 3-monooxygenase, a pivotal enzyme in the kynurenine pathway of tryptophan degradation. In rats, prenatal exposure to kynurenine, the direct bioprecursor of kynurenic acid, induces cognitive impairments reminiscent of schizophrenia in adulthood, suggesting a developmental dimension to the link between kynurenic acid and schizophrenia.

AIM:: The purpose of this study was to explore the possible impact of the maternal genotype on kynurenine pathway metabolism.

METHODS:: We exposed pregnant wild-type ( Kmo+/+ ) and heterozygous ( Kmo+/- ) mice to kynurenine (10 mg/day) during the last week of gestation and determined the levels of kynurenic acid and two other neuroactive kynurenine pathway metabolites, 3-hydroxykynurenine and quinolinic acid, in fetal brain and placenta on embryonic day 17/18.

RESULTS:: Maternal kynurenine treatment raised kynurenic acid levels significantly more in the brain of heterozygous offspring of Kmo+/- than in the brain of Kmo+/+ offspring. Conversely, 3-hydroxykynurenine and quinolinic acid levels in the fetal brain tended to be lower in heterozygous animals derived from kynurenine-treated Kmo+/- mice than in corresponding Kmo+/+ offspring. Genotype-related effects on the placenta were qualitatively similar but less pronounced. Kynurenine treatment also caused a preferential elevation in cerebral kynurenic acid levels in Kmo+/- compared to Kmo+/+ dams.

CONCLUSIONS:: The disproportionate kynurenic acid increase in the brain of Kmo+/- animals indicates that the maternal Kmo genotype may play a key role in the pathophysiology of schizophrenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app