Add like
Add dislike
Add to saved papers

Age-specific and context-specific responses of the medial extended amygdala in the developing prairie vole.

The social needs of organisms change as they mature. Yet, little is known about the mechanisms that subserve processing social interactions or how these systems develop. The medial extended amygdala (meEA) is comprised of the medial bed nucleus of the stria terminalis (BSTm) and the medial amygdala (MeA). This neural complex holds great promise for understanding how the social brain processes information. We assessed expression of the immediate early gene cFos and the enzyme tyrosine hydroxylase (TH) at three developmental time-points (postnatal day [PND] 2, 9, and 21) to determine how developing prairie voles process familial social contact, separation, and reunion. We demonstrate that (1) BSTm cFos responses were sensitive to separation from family units at PND 9 and PND 21, but not at PND 2; (2) MeA cFos responses were sensitive to reunion with the family, but only in PND 21 pups; (3) BSTm TH neurons did not exhibit differential responses to social condition at any age; and (4) MeA TH neurons responded strongly to social contact (remaining with family or following reunion), but only at PND 21. Our results suggest that the sub-units of the meEA become functionally responsive at different developmental time points, and are differentially activated in response to distinct social contexts. Overall, our results support the notion that interconnected regions of the meEA follow divergent developmental timelines and are sensitive to distinct properties of social contexts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app