Add like
Add dislike
Add to saved papers

Co(II) is not oxidized during turnover in the copper amine oxidase from Hansenula polymorpha.

Co(II) substitution into the copper amine oxidases (CAOs) has been an effective tool for evaluating the mechanism of oxygen reduction in these enzymes. However, formation of hydrogen peroxide during turnover raises questions about the relevant oxidation state of the cobalt in these enzymes and, therefore, the interpretation of the activity of the metal-substituted enzyme with respect to its mechanism of action. In this study, Co(II) was incorporated into the CAO from Hansenula polymorpha (HPAO). The effect of hydrogen peroxide on the catalytic activity of cobalt-substituted HPAO was evaluated. Hydrogen peroxide, either generated during turnover or added exogenously, caused a decrease in the activity of the enzyme but did not oxidize Co(II) to Co(III). These results are in strong contrast with results from the CAO from Arthrobacter globiformis (AGAO), where hydrogen peroxide causes an increase in the activity of the enzyme as the Co(II) is oxidized to Co(III). The results of this study with HPAO support previous reports that have shown that this enzyme acts by transferring an electron directly from the reduced TPQ cofactor to dioxygen rather than passing the electron through the bound metal ion. Furthermore, these results provide additional evidence to support the idea that different CAOs use different mechanisms for catalysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app