Add like
Add dislike
Add to saved papers

Effect of continuous feeding of CO 2 and pH in cell concentration and product titers in hIFNγ producing HEK293 cells: Induced metabolic shift for concomitant consumption of glucose and lactate.

Journal of Biotechnology 2018 December 11
Although pH control at physiological levels is generally considered as the optimal culture condition, in some cases other strategies should be taken into account for their beneficial effects on process performance. pH and CO2 levels are chemical variables that have a major impact in cell growth and product titers in cell culture since their effect on key metabolic routes. HEK293 cells expressing recombinant hIFNγ showed different metabolic behavior when cultured in shake flask compared to pH-controlled bioreactors, in which a decrease in cell density and product titer were observed. This yield loss observed in bioreactor cultures could be reverted by adding 1% CO2 to air inlet flow in a non-controlled pH bioprocess. With this strategy, a significant outcome of 4-fold increase in terms of maximum cell density and 2-fold increase in volumetric concentration of recombinant protein (hIFNγ) when compared to the pH-controlled culture in bioreactor (standard culture conditions) has been obtained. Results evidenced the importance of pH and CO2 concentration in this case, in order to reproduce the behavior observed in optimization experiments performed in shake flasks. Thus, it was demonstrated that not always constant controlled variable setpoint (like pH or CO2 addition) becomes the best bioprocess performance strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app