Add like
Add dislike
Add to saved papers

Remifentanil attenuates lipopolysaccharide-induced oxidative injury by downregulating PKCβ2 activation and inhibiting autophagy in H9C2 cardiomyocytes.

Life Sciences 2018 November 16
AIM: Lipopolysaccharide (LPS)-induced myocardial injury is a leading cause of death in patients with sepsis, which is associated with excessive activation of PKCβ (especially PKCβ2) and autophagy. Remifentanil, a μ-opioid receptor agonist, is well demonstrated to have beneficial effects during sepsis, but the underlying mechanisms are still unknown. The present study was designed to investigate the roles of remifentanil in PKCβ2 and autophagy in LPS-treated cardiomyocytes.

MAIN METHODS: H9C2 cardiomyocytes were treated with or without remifentanil (2.5 μM), PKCβ2 inhibitor CGP53353 (CGP, 1 μM) or autophagy inhibitor 3-methyladenine (3-MA, 10 μM) in the presence or absence of LPS (10 μg/mL).

KEY FINDINGS: LPS exposure for 24 h led to a significant increase in cell death, LDH release and MDA production in H9C2 cardiomyocytes, accompanied with decreased SOD activity and excessive PKCβ2 activation and autophagy indicated by enhanced Beclin-1 and LC-3II expression and decreased p62 expression. All these changes were attenuated by remifentanil intervention. In addition, inhibition of LPS-induced PKCβ2 activation by CGP or autophagy inhibitor 3-MA has similar effects to remifentanil.

SIGNIFICANCE: Remifentanil protects H9C2 cardiomyocytes against LPS-induced oxidative injury, as a result of downregulating PKCβ2 activation and inhibiting autophagy, partially.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app