Add like
Add dislike
Add to saved papers

Effect of centrifugal force on the development of articular neocartilage with bovine primary chondrocytes.

Cell and Tissue Research 2018 October 24
A lot has been invested into understanding how to assemble cartilage tissue in vitro and various designs have been developed to manufacture cartilage tissue with native-like biological properties. So far, no satisfactory design has been presented. Bovine primary chondrocytes are used to self-assemble scaffold-free constructs to investigate whether mechanical loading by centrifugal force would be useful in manufacturing cartilage tissue in vitro. Six million chondrocytes were laid on top of defatted bone disks placed inside an agarose well in 50-ml culture tubes. The constructs were centrifuged once or three times per day for 15 min at a centrifugal force of 771×g for up to 4 weeks. Control samples were cultured under the same conditions without exposure to centrifugation. The samples were analysed by (immuno)histochemistry, Fourier transform infrared imaging, micro-computed tomography, biochemical and gene expression analyses. Biomechanical testing was also performed. The centrifuged tissues had a more even surface covering a larger area of the bone disk. Fourier transform infrared imaging analysis indicated a higher concentration of collagen in the top and bottom edges in some of the centrifuged samples. Glycosaminoglycan contents increased along the culture, while collagen content remained at a rather constant level. Aggrecan and procollagen α1 (II) gene expression levels had no significant differences, while procollagen α2 (I) levels were increased significantly. Biomechanical analyses did not reveal remarkable changes. The centrifugation regimes lead to more uniform tissue constructs, whereas improved biological properties of the native tissue could not be obtained by centrifugation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app