Add like
Add dislike
Add to saved papers

Type VI glandular trichome density and their derived volatiles are differently induced by jasmonic acid in developing and fully developed tomato leaves: Implications for thrips resistance.

Variation in the induction of plant defenses along the plant canopy can determine distribution and colonization of arthropod herbivores within the plant. In tomato, type VI glandular trichomes, which are epidermal defensive structures, and their derived volatiles are induced by the phytohormone jasmonic acid (JA). How JA-mediated induction of these trichome-associated chemical defenses depends on the leaf developmental stage and correlates with resistance against herbivory is unknown. We showed that application of JA reduced thrips-associated damage, however the amplitude of this response was reduced in the fully developed leaves compared to those still developing. Although JA increased type-VI trichome densities in all leaf developmental stages, as well as JA-inducible defensive proteins, these increases were stronger in developing leaves. Remarkably, the concentration of trichome-derived volatiles was induced by JA to a larger degree in developing leaves than in fully developed leaves. In fully developed leaves, the increase in trichome-derived volatiles was explained by an enhanced production per trichome, while in developing leaves this was mainly caused by increases in type-VI trichome densities. Together, we showed that JA-mediated induction of trichome density and chemistry depends on leaf development stage, and it might explain the degree of thrips-associated leaf damage in tomato.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app