Add like
Add dislike
Add to saved papers

The Effect of Charge and Mechanical Loading on Antibody Diffusion through the Articular Surface of Cartilage.

Molecular transport of osteoarthritis (OA) therapeutics within articular cartilage is influenced by many factors, such as solute charge, that have yet to be fully understood. This study characterizes how solute charge influences local diffusion and convective transport of antibodies within the heterogeneous cartilage matrix. Three fluorescently-tagged solutes of varying isoelectric point (pI) (4.7-5.9) were tested in either cyclic or passive cartilage loading conditions. In each case, local diffusivities were calculated based on local fluorescence in the cartilage sample, as observed by confocal microscopy. In agreement with past research, local solute diffusivities within the heterogeneous cartilage matrix were highest around 200-275 µm from the articular surface, but 3-4 times lower at the articular surface and in the deeper zones of the tissue. Transport of all 150 kDa solutes was significantly increased by the application of mechanical loading at 1 Hz, but local transport enhancement was not significantly affected by changes in solute isoelectric point. More positively charged solutes (higher pI) had significantly higher local diffusivities 200-275 µm from the tissue surface, but no other differences were observed. This implies that there are certain regions of cartilage that are more sensitive to changes in solute charge than others, which could be useful for future development of OA therapeutics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app