Add like
Add dislike
Add to saved papers

A benchmark study of k-mer counting methods for high-throughput sequencing.

GigaScience 2018 October 23
The rapid development of high-through sequencing technologies means that hundreds of gigabytes of sequencing data can be produced in a single study. Many bioinformatics tools require counts of substrings of length k in DNA/RNA sequencing reads obtained for applications such as genome and transcriptome assembly, error correction, multiple sequence alignment, and repeat detection. Recently, several techniques have been developed to count k-mers in large sequencing datasets, with a trade-off between the time and memory required to perform this function. We assessed several k-mer counting programs and evaluated their relative performance, primarily on the basis of runtime and memory usage. We also considered additional parameters, such as disk usage, accuracy, and parallelism, and the impact of compressed input, performance in terms of counting large k values, and the scalability of the application to larger datasets. We make specific recommendations for the set-up of a current state-of-the-art program, and suggestions for further development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app