Add like
Add dislike
Add to saved papers

Gut Microbial Signatures Underline Complicated Crohn's Disease but Vary Between Cohorts; An In Silico Approach.

Microflora dysbiosis is implicated in the pathophysiology of Crohn's disease. This work analyzes differences in microbial communities and relevant metabolic pathways among the nonstricturing nonpenetrating (B1), stricturing (B2), and penetrating (B3) subphenotypes of Crohn's disease vs healthy controls. We conducted a bioinformatics analysis using the QIIME pipeline and the Calypso, linear discriminant analysis effect size, Phylogenetic Investigation of Communities by Reconstruction of Unobserved States, and STAMP tools on publicly available 16S bacterial rRNA sequencing data from terminal ileum mucosal biopsies of healthy controls and the 3 subphenotypes of Crohn's disease. We analyzed differences in microbial diversity and taxonomy, inferred active metabolic pathways via relevant genes' abundance, and detected bacterial families that could serve as biomarkers. Microbiota α-diversity was decreased within all 3 Crohn's disease subphenotypes vs control samples, with more significant reductions in B2 and B3 compared with B1. β-diversity analysis identified similar microbial patterns in B2 and B3 samples, different from those of B1 and from those of healthy controls. Abundance analysis of microbial families in cohorts, beyond altered abundances compared with healthy controls, highlighted significant differences between the B2 and B3 subphenotypes and the B1 subphenotype. A similar pattern was observed in the inference of microbial metabolomics: the B2 and B3 cohorts had different predicted metabolotypes from the B1 cohort, in addition to differences observed in Crohn's disease vs healthy controls. Our findings indicate distinct microbiome signatures in complicated Crohn's disease subphenotypes and provide the basis for further investigation into the role of gut microflora in the natural course of Crohn's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app