Add like
Add dislike
Add to saved papers

The Effects of Resveratrol, Metformin, Cold and Strength Training on the Level of Perilipin 5 in the Heart, Skeletal Muscle and Brown Adipose Tissues in Mouse.

The high accumulation of lipid droplets in the cell is related to metabolic disorders, such as obesity. Perilipin 5 (Plin5), plays an important role in triglyceride hydrolysis in the lipid droplets. In this study, this protein has been evaluated in different tissues and conditions in mice. Fifty male mice were divided into 5 groups and treated for 45 days with Resveratrol, Metformin, strength training, and 4 °C cold. Brown adipose tissue (BAT), gastrocnemius skeletal muscle and heart were isolated for RNA extraction. The Plin5 gene expression was evaluated, using Real-Time PCR, and the plin5 was analyzed at the protein level, using western blot. In BAT, Resveratrol significantly reduced the plin5 protein level and gene expression (p < 0.05). In heart tissue, Resveratrol and strength training, decreased (p < 0.05) the plin5 expression, but Metformin increased the gene expression (p < 0.05). In skeletal muscle, resveratrol, strength training, cold and Metformin significantly increased the plin5 expression at the gene and protein level (p < 0.05). In BAT, Resveratrol has a greater effect in decreasing lipid deposits, compared with the strength training and cold; thus, it can play a better role in preventing lipid accumulation. In heart tissue, Resveratrol probably decreases insulin resistance, due to the increased expression of plin5 in skeletal muscle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app